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Abstract

A finite element model of a structure can provide useful knowledge of the structural response but such a model may also

lead to a misunderstanding of the structure’s behaviour. That is why a new model was developed, namely the antioscillator

model. This paper explains how the antioscillator model can be obtained from a finite element model. The antioscillator

model is particularly suitable for dealing with impact problems; for instance, it can provide parameters that have physical

meaning, and can be used to forecast several impact results (the duration of impact for example). Moreover, it is shown

how this model may select optimal degrees-of-freedom for simulations such that some dof can then be disregarded and the

others are assumed to be necessary and sufficient.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The most commonly used technique for structural modelling is the finite element (FE) method [1]. This is
well-adapted for solving dynamic problems, such as cases of impact between structures. The drawback can be
for misunderstanding of the global phenomena involved. This may lead to a non-efficient model perhaps with
too many degrees-of-freedom (dof) when in fact a few dof may be sufficient.

This scenario is often the case for low velocity impacts, as considered in this paper. Indeed, very simple
models have been used efficiently to determine the impact force. A single dof system connected to the impactor
(a rigid mass) through a nonlinear interaction spring has been shown to be suitable and sufficient for
evaluating the structural response [2–4]. The stiffness of that single dof system can be determined by the static
stiffness combined with some other structural aspects [2] such as membrane stiffness, shear stiffness, etc.
Likewise, the interaction spring stiffness kcontact can be derived from a contact law that can be determined
experimentally [5]. The Hertz contact law will be considered in this paper.

Nevertheless, these models allow for the first eigenmode of the structure only. Jacquelin et al. [6,7] have
extended this model now called the antioscillator (AO) model and, have shown how to derive its parameters
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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experimentally. In this paper it will be shown how to get such a model from the structural FE model, and that
such a model will significantly reduce the number of dof.

The AO description is linked to a given dof i0 i.e., to a point on the studied structure and to a direction. The
use of the direction of an action effect, an impact force direction for instance, can lead to a very efficient
model. That is why this description suits to impact problems very well particularly when the impact location
and direction are known. Also this approach is general and may be used with all kind of loads and, above all,
it can explain how the global structure behaves when excited in specific dof i0 [8].

This paper may be viewed as a companion paper to the article by Jacquelin et al. [6] in which a very general
presentation may be found. First a practical presentation of AO model based on a FE model is given in the
present paper. Then a dof selection criterion is proposed in order to be able to disregard some of the dof.
Likewise, a truncation of the response expansion is presented to reduce the dof number. Finally, some
examples are given to show the efficiency and simplicity of the method, and to evaluate the selection and
truncation criteria.

2. The AO model

A dynamic test is considered in which the driven point and the measurement point are collocated. The
frequency response function presents some maxima (associated with the resonance frequencies) and some
minima (associated with the antiresonant frequencies). The maxima depend only on the structure
characteristics whereas the minima depend on the structure characteristics and on the measurement/driven
point as well. The AO model is linked to the antiresonant frequencies, as indicated in the following. Therefore
for each point on a structure it is possible to establish an AO model. More precisely, the AO model depends on
a dof associated with the point of interest. In the following, the dof associated with a AO model is referred to
as ‘‘i0’’.

The mass (MFE) and stiffness (KFE) matrices of the FE model are supposed to be known a priori; n is the
model dof number, XðtÞ is the dof vector and FðtÞ is the load vector.

2.1. Static, constraint and residual modes

Traditionally, problems in structural dynamics require a discretisation technique to be implemented. The
FE method is probably the most popular discretisation method. The AO method is based on some specific
Rayleigh–Ritz vectors which may be easily derived from a first FE model. To define these vectors requires
some specific matrices and vectors associated with the chosen dof i0:
�
 the AO mass MAO (AO stiffness KAO) matrix: This matrix is derived from the FE mass (stiffness) matrix by
replacing the i0th row and the i0th column by a row and a column filled with zeros;

�
 the static load Fst: This is an n-size vector such as all of its elements are zero except the i0th element; the ith
element is

Fst i ¼ Fst idi i0 (1)

where d is the Kronecker symbol.

The static load vector has no link with the actual loads applied to the structure. Indeed this vector is
introduced as a way to account for the i0 dof.

The following modes can then be defined:
�
 The constraint modes f/i;oAR igi¼1...n�1 are the solution of the eigenproblem associated with the AO mass
matrix and the AO stiffness matrix; hence the eigenvectors f/igi¼1...n�1 cancel out for the i0 dof,

/i i0
¼ 0 (2)
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Accordingly, the associated eigenfrequencies belong to the set of the antiresonant frequencies [9].

�
 The static mode /st is a dof vector such that,

KFE/st ¼ cstFst (3)

/st i0
¼ 1 (4)

where we have to distinguish the statically determinate and indeterminate structures to define cst:

� statically determinate structures cst ¼ 1,

/st ¼ ðK
FEÞ
�1Fst (5)

� statically indeterminate structures cst ¼ 0 and / is a rigid body mode.
st
�
 The residual mode /0 is a vector which verifies,

/0 ¼ /st �
Xn�1
i¼1

ci/i (6)

8iX1; /t
0M

FE/i ¼ 0 (7)

The orthogonality property (7) leads to

ci ¼
/t

iM
FE/st

/t
iM

FE/i

(8)

Then, the dof vector X may be expanded in terms of a sum of the Rayleigh–Ritz vectors f/igi¼1���n�1:

XðtÞ ¼
Xn�1
i¼0

qiðtÞ/i (9)

2.2. Antioscillators

The dof vector expansion (9) may be reorganised as follows:

XðtÞ ¼ q0ðtÞ /st �
Xn�1
i¼1

ci/i

 !
þ
Xn�1
i¼1

qiðtÞ/i

¼ q0ðtÞ/st þ
Xn�1
i¼1

qiðtÞ

ci

� q0ðtÞ/i

� �
ci/i

¼ l0ðtÞw0 þ
Xn�1
i¼1

ðliðtÞ � l0ðtÞÞwi (10)

where

l0ðtÞ ¼ q0ðtÞ ¼ Xi0 ; w0 ¼ /st

liðtÞ ¼
qiðtÞ

ci

; wi ¼ ci/i

The parameter l0 is the i0 dof, Xi0 .
This change of variables leads to the striking model depicted in Fig. 1 where the dof are the parameters
fligi¼0...n�1 and the first single dof system ðm0; k0Þ is the basis of the n� 1 single dof systems ðmi; kiÞi¼1...n�1,
which are called the AOs. The AO parameters ðmi; kiÞi¼0...n�1 must be defined as well as the load vector FAO.
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Fig. 1. AO model of any structure.
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2.2.1. Masses fmigi¼0...n�1
The kinetic energy of the structure is derived in term of parameters li. By comparing it to the kinetic energy

of the system represented in Fig. 1, it may be proved (see Appendix A) that

8iX1; mi ¼ c2i /
t
iM

FE/i ¼
ð/t

iM
FE/stÞ

2

/t
iM

FE/i

(11)

m0 ¼ /t
stM

FE/st �
Xn�1
i¼1

mi ¼ mst �
Xn�1
i¼1

mi (12)

Expression (12) suggests that m0, as the difference between a ‘‘static’’ mass mst (the one involved in the static
mode) and the masses fmigi¼1...n�1, may be viewed as the residual mass. Relation (11) shows that the masses are
independent of the norm of the eigenshapes f/igi¼1...n�1.

2.2.2. Stiffnesses fkigi¼0...n�1
Similarly, in Appendix B it has been proved that the deformation energy of the structure may be identified

to the deformation energy of the AO-model:
�
 k0 ¼ /t
stK

FE/st (13)

� For statically determinate structures, k0 is the static stiffness.
� For statically indeterminate structures (i.e., /st is a rigid body eigenvector), k0 ¼ 0.
�
 8iX1; ki ¼ o2
AR imi (14)
2.2.3. Force vector

By considering the balance equation of the structure, it has been proved in Appendix C that,

FAO
0 ¼ /t

0F (15)

8iX1; FAO
i ¼ ci/

t
iF (16)
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3. A reduced AO model

In the following the AOs have been sorted according to their ascending natural frequencies.
An AO model will be more interesting than a FE model from a simulation point of view if it is possible to

provide a model order reduction. That is possible by implementing the following:
�
 disregarding a priori some AOs,

�
 truncating the following expansion:
X ðtÞ ¼ l0ðtÞw0 þ
Xn�1
i¼1

ðliðtÞ � l0ðtÞÞwi
3.1. AO selection

We next consider a symmetric structure with a load applied along the axis of symmetry. It is well known
that the eigenmodes are either symmetric or antisymmetric, the higher modes are not excited and that the
generalised coordinates associated with these modes cancel out. Nevertheless, a mode expansion does not give
a criterion for determining that such a generalised coordinate can be disregarded. The antisymmetric modes
are in the constraint mode set as well, and they do not take part in the response. Hence they must not be
considered. It turns out that the AO masses associated with these constraint modes then cancel out. More
generally, when an eigenmode corresponds to a constraint mode i, the AO mass mi is equal to zero. The proof
is given in Appendix D. So a criterion is highlighted for disregarding an AO, and therefore if an AO has a mass
equal to zero then that AO is disregarded.

Obviously, from a numerical point of view a zero-mass means a mass below a given threshold mass. More
precisely, in the following, the threshold mass will be scaled by the maximum AO mass because an absolute
threshold is impossible to define.

3.2. Truncation

Fig. 1 suggests that the AO displacement may be closed to the residual mass displacement when the AO
number is high enough, noting that there is some subjectivity associated with this decision. Indeed, if the
AO number i is high enough, the frequency oAR i may be very large, and that would make liðtÞ almost equal to
l0ðtÞ. All the AOs which have the same displacement as the residual mass behave as the residual mass. In other
words it is not necessary to consider their displacements as additional dof; rather the masses related to these
AOs must be gathered in to the residual mass. Then, such a truncation does not introduce any unrealistic lack
of mass.

To evaluate if an AO displacement is close to the residual mass displacement, the discrepancy Di between
the ith AO and the residual mass can be introduced, as follows:

Di ¼
kli � l0k2
kl0k2

(17)

Then a truncated model may be obtained by defining a discrepancy threshold. All the AO with a discrepancy
lower than the threshold should be truncated.

Obviously, this approach does not show how the discrepancy threshold should be determined. Nevertheless,
it seems that we can have some a priori information about the discrepancy by correlating the discrepancy and
the AO mass distribution. This will be examined in the following examples.

4. A first example: the axial impact of two free–free bars

The axial impact of two identical free–free bars has been considered as a way of addressing the truncation
issue. The bars are made up of steel with circular cross section and hemispherical ends at the point of impact.
The material and geometrical properties of the bars are given in Table 1.
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The Hertz contact stiffness has been evaluated to be kH ¼ 2:9� 1010 Nm�3=2, for an end curvature of
70mm. The initial relative velocity is 0:4m s�1.

A numerical integration of the equations has been performed with an implicit b–g Newmark method
coupled with a Newton–Raphson technique to account for the nonlinear interaction force:

Fnl ¼ kH ðX
2
i0
� X1

i0
Þ
3=2 (18)

where Xi is the FE model dof vector associated with the bar i; Xi
i0
is the dof associated with the bar i AO

model, Fnl is the Hertz interaction force vector (due to bar 2 on bar 1).
4.1. The FE modelling

Each bar has been discretised in ne two-node elements, with 1 dof per node and a linear interpolation for the
displacement. Hence a mass matrix MFE

i and a stiffness matrix KFE
i has been built for each bar i from the FE

model. A direct integration provided the reference solution.
4.2. The modal model

The solution of this structural problem has been obtained from the dof vector mode expansion as well. The
eigenvectors have been calculated by solving the eigenproblem associated with the mass and stiffness matrices
MFE

i and KFE
i for each impacting structure i. The interaction force is calculated at each computation step by

combining the modal variables to evaluate the displacement for each structure at the impact point. This
method is very useful if a truncation of the mode expansion is implemented in order to reduce the number of
dof involved in the FE modelling.
4.3. The AO model

The mass and stiffness matricesMAO
i and KAO

i have been obtained from theMFE
i and KFE

i for the dof i0. The
eigenmodes of the MAO

i and KAO
i matrices are the constraint modes of the structure i; the ‘‘static’’ mode is a

rigid body mode that was easily obtained from MFE
i and KFE

i . The characteristics of the first AOs are listed in
Table 2. The ‘‘static’’ mass is actually the bar mass mst ¼ 1:73 kg and the stiffness k0 is equal to zero, for a
statically indeterminate structure.

Interestingly, the interaction force is directly computed because li
i0
¼ Xi i0 (i ¼ 1 or 2), as follows:

Fnl ¼ kH ðl
2
i0
� l1i0Þ

3=2 (19)
Table 1

Properties of the impacting bar i (i ¼ 1; 2).

E (GPa) r ðkgm�3) d (mm) L (mm)

210 7800 30 313

Table 2

Characteristics of the AO bar model.

AO number 1 2 3 4

Mass (kg) 1.40 0.16 0.06 0.03

Stiffness (108 Nm�1) 9.49 9.48 9.51 9.52
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4.4. Simulations for an axial impact of two free– free bars

The modelling with the eigenmodes or the AOs offers a possibility for truncating an expansion. So the next
simulations will permit a comparison of the results. The interaction force and the stresses in one bar are
presented.

The bars have been discretised into 49 elements. Hence, the FE model has 50 dof. Some simulations have
been carried out for the full FE model, the AO model, and the modal model.

The interaction forces given by the FE model, the 3-dof modal model and the 3-dof AO model, are in very
good agreement (see Fig. 2). More precisely, the FE results and the 3-dof AO model give an almost perfect
overlay.

Fig. 3a compares the stresses obtained from the 3-dof AO model and the FE model, whereas Fig. 3b
compares the stresses obtained from the 3-dof modal model and the FE model. It is shown that 3 dof are
enough for the AO model for obtaining results as good as those of the FE model, whereas the modal model
gives much less accurate results for the same dof number.

Moreover, the locations for the measurements are seen to be far from the impacted end of the bar. Hence
the stress wave has had to travel, and no signal has been able to be recorded before 5 ms at the first point and
19ms at the second point. Fig. 4 shows that no perturbation has occurred before these durations when the AO
model is used, even with few dof. Accordingly, the AO model allows for wave propagation although, that is
not obvious from the AO-model scheme depicted in Fig. 1.
4.5. Truncation criterion

The curves plotted in Figs. 3 and 4 show the sensitivity to the truncation order. Fig. 5 shows that the AO
displacement is close to the residual mass displacement when the AO number is greater or equal to two. The
discrepancies of the AO have been evaluated: Di is lower than 0.4%, except for the first AO (D1 ’ 2:8%).
Then, all the AOs except the first one behave almost as the residual mass. Hence a truncated model could be
obtained by defining a discrepancy threshold. It is set to 1% for maximum discrepancy so the ratio of an AO
discrepancy to the maximum discrepancy has had to be evaluated. As suggested in the previous section, the
ratio of the AO masses to the greatest AO mass are compared to the ratio of the discrepancies to the greatest
discrepancy. Fig. 6 shows that both are very similar. Therefore the 1% threshold has been applied to the AO
mass ratio. Five AOs are then considered (see Fig. 6) and the others are gathered in to the residual mass. The
interaction force and the stresses can be evaluated with five AOs, and the results give almost the same curves as
those plotted in Figs. 2a and 4. This then validates the 1% threshold for this example.
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

t (ms)

Fo
rc

e 
(N

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

t (ms)

Fo
rc

e 
(N

)

Fig. 2. Interaction force: FE model: 50 dof (. . .); (a) antioscillators model: 3 dof (–); (b) modal model: 3 dof (–).
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Fig. 3. Stress at the positions x ¼ 0:32� L and 0:84� L: FE model: 50 dof (. . .); (a) antioscillators model: 3 dof (–); (b) modal model: 3

dof (–).
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Fig. 4. Stress at the positions x ¼ 0:32� L and 0:84� L: FE model: 50 dof (. . .); antioscillators model: 10 dof (–).
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5. Second example: a solid impacted by a rigid mass

This example aims to prove that the AO-model may be built easily even for more complex structures, 3D
solids for instance. Once again, the efficiency of the method for simulating an impact event is presented.
5.1. Description of the structure

A simply supported beam is considered in this section: a 3D FE is used to model this solid. The element is
defined by eight nodes having 3 dof (translations) at each node and by a linear interpolation with respect to
each direction. The element number in the x, y and z direction is, respectively, 50, 2 and 2.
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Table 3

Properties of the solid.

E (GPa) r ðkgm�3) a (mm) L (m)

70 2400 20 1

E. Jacquelin et al. / Journal of Sound and Vibration 324 (2009) 317–331 325
The beam has a square section (a� a), Young’s modulus E, density r and length L. The beam
characteristics are listed in Table 3.

The boundary conditions have been set as follows:
�
 the left lower end (x ¼ 0, z ¼ 0) is grounded to the x-axis, y-axis and z-axis;

�
 the right lower end (x ¼ L, z ¼ 0) is grounded to the y-axis and z-axis.
The full FE model has 1362 dof.
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5.2. The truncation criterion

The beam is impacted by a spherical mass (radius R) at the centre of the top surface. The impact velocity
vimpact is parallel to the z-axis. As the impact force location and direction are known, we are able to derive the
AO model from the mass and stiffness matrices according to Section 2. The characteristics of the first 6 AOs
are listed in Table 4.

The Hertz law is used to describe the contact conditions between both solids and the Hertz stiffness kH is
given in Table 5. The spherical mass is considered as a rigid solid, see the properties in Table 5.

The mid-span displacement of the beam and the displacement of the mass are both shown in Fig. 7; the
impact force is illustrated in Fig. 8. Two models have been used to obtain these results. One is based on the
AOs and the other one is from a mode superposition analysis. Both of them are derived from the FE model
and give the same results, but they do not have the same dof number: 11 AOs, i.e. 12 dof, are enough to obtain
the results, whereas 40 modes are required.

In fact this example illustrates very well the AO selection discussed in Section 3. Indeed, considering the first
eigenmode the shape is seen to be in the xy-plane. Therefore this mode does not have any actual influence on
the response because the impact velocity is parallel to the z-axis. The generalised coordinate associated with
the first mode should be disregarded and this is the same for all the modes with eigenshapes in the xy-plane. It
is not easy to detect such features for the eigenshapes; thus no generalised coordinates are disregarded. On the
Table 4

Characteristics of the AO beam model.

AO number 1 2 3 4 5 6

Mass (g) 0.038 248.6 1.5 55.2 22.4 0.2

Stiffness (106 Nm�1) 80� 10�6 1.28 0.05 2.70 1.61 0.03

Table 5

Properties of the sphere.

Mass R (mm) kH (Nm�3=2) vimpact (m s�1)

mbeam

2
10 7:8� 109 0.01
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Fig. 7. Mid-span displacement of the beam—displacement of the mass.
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Fig. 9. Third mode eigenshape.
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contrary, the AO-model may easily detect whether a constraint mode has negligible influence by evaluating the
mass of the corresponding AO, as indicated in Section 3. In the simulations all the AOs that have a mass less
than 10�5 �mst can be neglected. It is found that a constraint mode with a shape that exists in the xy-plane
provides a mass which is almost-zero i.e. lower than 10�20 �mst. Then, such a constraint mode does not
provide an AO.

Likewise a constraint mode corresponding to an eigenmode has a zero mass as well, see Appendix D. That is
the case when the dof i0 is also a modal node. In the studied case the structure is not exactly symmetric with
respect to the mid-span section, due to the nonsymmetric boundary conditions. Nevertheless Fig. 9 shows that
the third eigenshape is almost antisymmetric with respect to the mid-span section; accordingly this mode
corresponds almost exactly to the second constraint mode and that was also proved by comparing the
frequencies. The eigenfrequency is 232.55Hz and the antiresonant frequency is 232.57Hz. Then we find that
the ratio of the corresponding mass to the static mass is 8� 10�5. This AO is not disregarded because the
criterion has been to neglect the AOs that have a mass less than 10�5 �mst but in fact its influence on the
response is negligible. In the studied case, only 20 AOs have a mass greater than 10�5 �mst. But the 1st, 3rd,
6th, 8th, 11th and 18th AOs, see Fig. 10, have a negligible influence on the response. All those AOs correspond
to a constraint mode which is also an (almost) eigenmode of the structure. That is proved in Fig. 8 where the
impact forces obtained with 11 AOS and 20 AOs are seen to be the same.

Thus, if the threshold is 10�4 �mst, then these AO would have been automatically disregarded and then
11 AOs would have be found immediately.

Moreover, a truncation had been done according to Section 3. The discrepancy threshold has been set to
1% of the maximum discrepancy. As observed in Fig. 6, Fig. 10 shows that the discrepancy ratio trend was
very similar to the AO mass ratio trend. So the 1% threshold is set on the mass ratio: 11 AOs are finally
considered. The impact force obtained with 11 AOs and 20 AOs is in an excellent agreement, Fig. 8. This
example validates the 1% threshold.

Thus, when a truncation is achieved, the first n constraint modes that provide a mass greater than a given
threshold are considered. Accordingly, the parameters used to describe the response are in a certain way
optimised and lead to less dof than the mode expansion analysis.
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6. Conclusions

It has been shown that any FE model may be transformed into an equivalent spring-mass set system in a
form of an AO model. From a simulation point of view, this is very useful for the explicit integration methods
because the AO model leads directly to a diagonal mass matrix.

The different examples have shown that the AO model makes it possible to select the AOs because
it is easy to forecast their influence on the response. That leads to a decrease in the number of dof when this
approach is used. The criterion used to disregard an AO is based on the discrepancies between the response of
the AOs and the residual mass. Both examples show a striking similarity between these discrepancies and the
AO mass distribution. This provides a criterion for selecting the significant AOs. Indeed, the first example
shows that the first AO has a major role in the impact problem. In the first example the first AO mass
represents more than 80% of the bar mass. That explains why only two AOs are enough to simulate correctly
the impact force. In the second example the first AO mass is more than 50% of the static mass. It is a large
proportion of the mass, but it is not enough to simulate accurately the structural response. That is why more
AOs are required.

Obviously this AO model has a cost due to the constraint mode computation. Moreover, if the force
location changes, those antimodes will have to be computed as well. But we must keep in mind that the first
interest of the AO model is to understand the structure behaviour better as shown by Pashah et al. [8].
Sometimes a better comprehension of the structure behaviour may avoid some unnecessary calculations.
Appendix A. Masses fmigi¼0...n�1

The masses may be deduced from the kinetic energy T:

T ¼ 1
2
_X

t
MFE _X (A.1)

The dof vector expression (9) and the eigenvector orthogonality properties lead to the following kinetic
energy expression:

T ¼
1

2

Xn�1
i¼0

_q2
i /

t
iM

FE/i ¼
1

2
_l
2

0/
t
0M

FE/0 þ
1

2

Xn�1
i¼1

c2i
_l
2

i /
t
iM

FE/i (A.2)
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So the masses depicted in Fig. 1 are defined by
�
 i40:

mi ¼ c2i /
t
iM

FE/i ¼
ð/t

iM
FE/stÞ

2

/t
iM

FE/i

(A.3)
�
 i ¼ 0:

m0 ¼ /t
0M

FE/0 (A.4)
The definition of /0 given by (6), the eigenvector orthogonality property and the definition of the coefficient
ci, (8), lead to the following result:

m0 ¼ /t
0M

FE/0 ¼ /t
stM

FE/st � 2
Xn�1
i¼1

ci/
t
iM

FE/st þ
Xn�1
i¼1

c2i /
t
iM

FE/i

¼ /t
stM

FE/st � 2
Xn�1
i¼1

ð/t
iM

FE/stÞ
2

/t
iM

FE/i

þ
Xn�1
i¼1

ð/t
iM

FE/stÞ
2

/t
iM

FE/i

¼ /t
stM

FE/st �
Xn�1
i¼1

ð/t
iM

FE/stÞ
2

/t
iM

FE/i

¼ /t
stM

FE/st �
Xn�1
i¼1

mi

Appendix B. Stiffnesses fkigi¼0...n�1

We consider the deformation energy V and the dof vector expansion (10):

V ¼
1

2
wt

0K
FEw0l

2
0 þ

1

2

XN

i¼1

ðli � l0Þ
2wt

iK
FEwi þ

XN

i¼1

ðli � l0Þl0w
t
0K

FEwi

¼
1

2
k0l

2
0 þ

1

2

XN

i¼1

ðli � l0Þ
2ki þ

XN

i¼1

ðli � l0Þl0ci/
t
stK

FE/i (B.1)

where the constraint mode orthogonality property is used. Moreover the static mode is orthogonal to the
constraint vectors with respect to the stiffness matrix. Indeed,

8iX1; /t
stK

FE/i ¼ /t
iK

FE/st ¼ /t
iFst ¼ /t

i i0
Fst i0 ¼ 0 (B.2)

where the definitions of Fst and the constraint modes given by Eqs. (1) and (2) were used.
Then, the deformation energy is given by

V ¼
1

2
k0l

2
0 þ

1

2

Xn�1
i¼1

ðli � l0Þ
2ki (B.3)

Then the stiffnesses depicted in Fig. 1 can be defined as
�
 k0 ¼ /t
stK

FE/st (B.4)

� For statically determinate structures, k0 is the static stiffness.
� For statically indeterminate structures (i.e., /st is a rigid body eigenvector), k0 ¼ 0.
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�
 i ¼ 1 . . . n� 1:

ki ¼ wt
iK

FEwi ¼ c2i /
t
iK

FE/i ¼ c2i o
2
AR i/

t
iM

FE/i ¼ o2
AR imi (B.5)

Moreover an eigenfrequency of a constraint mode is an antiresonance frequency [9]. Then the natural
frequencies of the single-dof systems for i ¼ 1 . . . n� 1 belong to the set of the antiresonant frequencies.
This is why these systems are called ‘‘AOs’’.

Appendix C. Load vector FAO

We consider the balance equation

MFE €XðtÞ þ KFEXðtÞ ¼ FðtÞ (C.1)

Thus by multiplying Eq. (C.1) by /i and using the expansion (9), the balance equation was

Xn�1
j¼0

€qjðtÞ/
t
iM

FE/j þ
Xn�1
j¼0

qjðtÞ/
t
iK

FE/j ¼ /t
iFðtÞ (C.2)

Then the definition of the different parameters can be used:
�
 i ¼ 0:

m0 €q0 þ q0 kst �
Xn�1
j¼1

kj

 !
�
Xn�1
j¼1

qjcj/
t
jK

FE/j ¼ /t
0F (C.3)

So, in terms of li:

m0
€l0 þ kstl0 þ

Xn�1
j¼1

kjðl0 � ljÞ ¼ /t
0F ¼ FAO

0 (C.4)
�
 i40:

mi

c2i
€qi þ

ki

c2i
qi �

ki

c2i
ciq0 ¼ /t

iF (C.5)

The relation between qi and li leads to

mi
€li þ kiðqi � q0Þ ¼ ci/

t
iF ¼ FAO

i (C.6)
Appendix D. A constraint mode defined by an eigenmode

Let f/j ;ojgj¼1...n be the eigenmodes of a structure normalised with respect to the mass matrix: /t
iM

FE/i ¼ 1.
We consider that f/i;oig is the ith eigenmode, and that this is a constraint mode as well:

/i i0
¼ 0 (D.1)

It has to be proved that

mi ¼
ð/t

iM
FE/stÞ

2

/t
iM

FE/i

¼ 0

i.e., that /i and /st are orthogonal with respect to the mass matrix.
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Some different cases have to be addressed:
(1)
 f/i;oig is not a rigid body mode: oia0.
/st may be expanded in terms of the eigenvectors:

/st ¼
Xn

j¼1

aj/j (D.2)

We consider the product (D.3):

/t
iK

FE/st ¼ aið/
t
iK

FE/iÞ ¼ aio2
i (D.3)

This product (D.3) is equal to zero. Indeed the static mode definition and relation (D.1) leads to

/t
iK

FE/st ¼ /t
iFst ¼ /t

i i0
Fst i0 ¼ 0

Then ai is equal to zero. So

mi ¼
ð/t

iM
FE/stÞ

2

/t
iM

FE/i

¼ ðaiÞ
2
¼ 0
(2)
 f/i;oig is a rigid body mode; hence f/i;oig is an eigenmode as well. In that case /st is a rigid body mode of
the structure as well. The eigenmode orthogonality properties lead immediately to the result:

mi ¼ 0
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